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Introduction n

Waveforms in the tfime domain

The waveform of generic power systems’s quantities (e.g. a bus
voltage or a line current) can be assumed to be purely
sinusoidal and of constant frequency.

a(t) = A gy Sin(wt + 0)

Aoy € RT amplitude: max value of a(t).
w € R* angular frequency [1/5]
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Introduction n

Waveforms in the tfime domain

a(t) = A, g Sin(wt + 0)

the period, in [s], of the waveform is defined as T = 2n/w, and
its frequency, in [Hz], as f = 1/T = w/2m.
Finally, the Root Mean Square (RMS) is:

t+T Amax

1
A= |= A% cos?(wt + 0)dt = =~ (0.707A
\/ ft max ( ) 2 max

T
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Iso-frequency quantities

a(t) leads b(t) by ¢

a(t) = V2 A sin(wt + 6,)
b(t) = V2 B sin(wt + ;)

al(t)
b(t)

Notfe that a(t) and b(t) have the same
angular frequency. The phase angle shift |

a(t) is in phase with b(t)

between a(t) and b(t) Is:

alt)
b(t)

a(t) is in opposition of phase with b(t)

@ =0,—0,
With:
@ = a(t) and b(t) are in phase.
@ >0 a(t) leads b(t) by ¢.

<0 a(t) lags b(t) by o.

alt)
b(t)
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Euler identity

Phasor Diagram

- JIm
For any real number 6: o |
el =cosO +/sinB
1.0 1 /v\
/ SiNO feeeeveeenbi ;
e/? = cos@ +jsinb ] / \
o 6 Re
' cos@
where the inputs of the \ /
trigonometric functions sin - \ /
and cos are given in radians. . ~_ | _—
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Euler identity

Geometric interpretation:

Any complex number z=2z; +jz,
can be represented in polar
coordinates as (z,6,) , where:

e z = |z| Is the distance from the

origin

e § = £z Isthe angle

counterclockwise from the

positive x-axis).

According to Euler’s identify, this is

equivalent to saying

Z = zel?

Phasor Diagram
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Sinusoids and phasors
a(t) = V2Acos(wt + 0) = Re[V24e/(@H+D]| = Re[V24e/9e/¥t| = Re[V2 Ae/@?]

a(t) = V24sin(wt + 0) = Im[V24e/ @H0)] = Im[V24e/%e/9t] = Im[V2 Ae/@t]

Phasor Diagram Time Domain
15 - 15
~Sm
a(t) = V2 Asin(wt + 6)
1.0 - 1.0 -
0.5 0.5
Re

0.0 0.0
—0.5 —0.5
-1.0 - -1.0 -
-1.5 . . . . -15
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-1.5 -1.0 —0.5 0.0 0.5 1.0 15 0 5 10 15 20 25 30 35 40



Infroduction n

Sinusoids and phasors
a(t) — AmaxSin(wt + 9) — S‘“[\/E Aej(wt+0)] — i”sm[\/f Aejeejwt] = Sm[\/i Zejwt]

Phasor Diagram Time Domain
15 = 15
~Sm —_—alt)
— bt
1.04 1.0 4
0.5 - 0.5 4
- Re
0.0 A 0.0 -
—0.5 -0.5 1
—1.0 4 -1.0 4
-1.5 r ‘ T T -1.5 r T T ; T T ‘
-1.5 -1.0 -0.5 0.0 0.5 10 15 0 5 10 15 20 25 30 35 40

Where the phasor is a current or a voltage given by:
A= Ael® = A(cosO +jsin0) = A26

In other words, we have a bijective transformation between
phasors and time-domain sinusoidal quantities.
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Sinusoids and phasors

Phasor Diagram
JSm

Amax

aj

T T T T
-1.5 -1.0 —0.5 0.0 0.5 1.0 15

Phasor domain

Time Domain

Amax 7

T T T T T T T
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Time domain

a(t) = V24sin(wt + 6)




Infroduction

Complex plane

Geometric interpretation

A= Ael? = A(cosO + jsinf) = a, + ja,

Phasor Diagram

where:
a, = Acosb

a, = Asin6

A=.a?+ad?

_1 Db
0 = tan 1;Wherea>0

-0.5A 1

0.5A
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Phasors properties

* Uniqueness:
Two sinusoids at the same frequency are equal if and
only if they are represented by the same phasor:

a(t) =b(t) & A=B

e Linearity:
The linear combination of phasors represents the same
linear combination of sinusoids at the same frequency

cia(t) + c,b(t) & c;A+ c,B,cq,¢c, € R

* Derivative:
It A is the phasor of a(t), the time derivative of a(t) is

given by jwA.
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Single phase AC circuits m

Electric voltage an potential difference

Voltage, or electric potential difference, between
two points A and B say V,g, associated to an electric
field E is defined as the work done by an external
force to move a unit positive charge (i.e., of 1 C)

from point A to point B without any acceleration: *B

B
VAB — fA,lE - dl
where;
e E is the electric field.

e dl is an infinitesimal vector element of the path from A to B.

In electrostatics (and slowly time-varying phenomena), the electric
field is conservative for which we have that:

$.E-dl=0

This implies that V5 is path-independent, therefore: V5 =V, — V3



Single phase AC circuits m

Electric current

Electric current i is defined as the rate at which charge g passes
through an oriented surface S (see figure). Considering that the
punctual charge flow rate defines the current density vector J, we get:

l—jj J - ndS—d—q

where n is the unity vector perpendicular to a
generic point on surface S.

For a surface S perpendicular to the current
density vector, assuming J uniform across S,
we have: + —

i =pcusS =1JI$

where p. is the charge density and u is the S
velocity of the charge carriers.



Single phase AC circuits n

Circuit analysis

Kirchhoff's Current Law (KCL) states that the sum of currents
entering/leaving a node that has n incident conductors, is zero.
KCL is a simple extension of the charge conservation principle.

n
Eik — O
k=1

Kirchhoff's Voltage Law (KVL) states that the sum of voltages over m
generic branches that form a closed loop (or mesh) is zero.

m
Evk =0
k=1



Single phase AC circuits

Voltages and currents

NNVN—>
R i(1)
v(t) L
C

Circuits where ouput voltages and current are linear combination of
input voltages and currents, are, by definition, linear.

In a linear circuit, a sinusoidal current i(t) corresponds to a sinusoidal
voltage v(t) at the same frequency with a different phase:

v(t) = V2 Veos(wt + 6y) = Re(V2 Vel®t)  with V = Velbv
i(t) = V2 Icos(wt + 0;) = Re(v2 Ie/*") with I = [eJ®



Single phase AC circuits

Generic impedance

The equation linking voltage and current

across a linear circuit composed by series
resistances, inductances and
capacitances in the time domain is: v(t) f\D

di

t
v =L+ % j_ooi(r)dr + Ri(t)

In the frequency domain, the equation i

Eecomes:( 1 . C’\D

V=[R+j(wL-=)|T=2T

~ |

Where Z is the impedance (complex
number). The latter equation is a simple
algebraic equation, easy to solve.




Single phase AC circuits

Resistor, inductor and capacitor

Phasor
1.5

1.04

Resistor Z =R
e v(1) and ((t) are in phase -« I iRe
e 7 is areal number
° (p — O

o

-1.04

-1.5 T T T T
-15 -10 =05 0.0 0.5 1.0 1.5

15

1.04

Inductor Z = jwL
e v(t) leads i(t) by m/2 e

0.0

e Z IS AN imaginary number ot A
e 9 =m/2
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N — i 1 s Phasor D:gra
[ ] —_— —] — Sm
Capacitor Z —

. E(t) lags i(t) by m/2 05 S

e Z IS an imaginary number
e = —7'[/2 ]
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Single phase AC circuits

Generic impedance

_ 1
/ =R ] L——]| =R X
+]<a) a)C) +

e RIs the resistance [Q]

e X thereactance X = X; — X; = wL —ﬁ

The reciprocal of impedance is the admittance: Y =

NIl —

Series of impedances:

ieq =272k & & &
k
. —L_
Parallel of impedances: 2
I > 1 4;7
A — ; -




Single phase AC circuits

Generic impedance

v(t) = V2Vcos(wt + 0y) = Re(V2Vel®t) >V = Vel
i(t) = V2Icos(wt + 6;) = Re(V2Te/t) > 1 = Ie/

From the definition of impedance:
Z = Kej(gV_HI) = Ke](p = 2
] 1 I

Therefore the phase shift angle:
@ =0y — 0

between current and voltage
phasors is also the angle of the load
impedance.
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1.2 4

1.0 1

0.8 1
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Single phase AC circuits

Circuit analysis

p
Circuit analysis
in time domain

KCL

+
KVL

vr = fe(iy)

Y element r

f+ is an integro-
differential
equation

\.

N\

7

=

.

Time to phasor
transform

KCL

+

KVL

7r — fp (77”)

Y element r

fp is an algebraic

equation

\

=

Solution

and
Inverse tfransformation
from the
phasor domain
to the
fime domain

J
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Powers in AC circults m

Decomposition of current with respect to voltage i(t)

v(t) = Vi cos(wt) and i(t) = L4, cos(wt — @)
i(t) can be transformed as: 0
i(t) = Ly (coswt cose + sinwt sing) =

= Lyax €COSQ coswt + L4, Sing sinwt = i,(t) + i,-(t)

1.00
0.75 1
0.50 A
0.25 A
uooJ”.

—0.25 7

—0.50 ~

—0.75 + % - N

—1.00

0 5 10 15 20 25 30
Time (ms)

i,(t) is the current component in phase with voltage, and i,.(t) the
component out of phase with voltage.



Powers in AC circults

Instantaneous power
The instantaneous power is defined as the

product of the istantaneous voltage and 31 : | el
current: NN N\
p(t) = v(£)i(t) TSN TN S
oY ¥ X

And it is easy to show that it is the sum of:
e the instantaneous in phase power p,(t)

e the instantaneous reactive power p,.(t)

0 5 10 15 20 25 30

p(t) = v(©)i(t) = v(t)ig(t) + v(t)ir(t)

N
= Pa(t) + pr(t) TN 4 n ;(3)
Observations: (1) A 5 Y
* The average value avg(p,(t)) # 0. I S W R B 2 W
e p(t) #0if @ # 0, namely if L,C # 0. \/ \
» The average value avg(p, (1)) = 0 Dthereis ~1
energy flowing into the circuit element (Lor¢) ° ° et

for half period and outside of it for the next half
period.
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Instantaneous power

Let’s visualise the instantaneous power and recall that it is the sum of:
e the instantaneous in phase power p,(t)
e the instantaneous reactive power p,.(t).

p() = v(0) i(t) = v(t) ig(t) + v(t) iy (t) = pa(t) + pr(t)

Phasor Diagram Time Domain

Im




Powers in AC circuits

Real (or active) power

The average power P, also known as real power, is the average of
the instantaneous power over one period T.

1 . ty+T 1 to+T 1 . ty+T
P =l p@dr = = [ pa@) + py )t = = [ p@an

Since p,(t) = V,qx cOswt Ly, ,,c05@ coswt = Vo, g L qy COS@ cos?wt, we get:

1
P = EVmaxImaxcosw = VI cosg

where IV and I are the RMS values of the voltage and the current,
respectively. In the Sl System of Units real power is measured in Wait

[WI.



Powers in AC circults m

Reactive power

The reactive power Q is the maximum value of the instantaneous
reactive power p,.(t):

Q = max|p,(t)] - sign(p) = max|[V,,,, coswt I, Sing sinwt] - sign(¢p) =
sin(2wt) , 1 . .
> - sign(p) = > VinaxImaxSing = VIsing

= maxX | VyaxImax SINQ

Q is the maximum value of the power exchanged by an inductive or
capacitive circuit element with the circuit sources (or with the
network to which the element is connected).

Q can be positive or negative depending on the sign of ¢. For an
inductive load, Q is assumed to be positive by convention and for @
capacitive load Q is assumed to be negative.

In the Sl system, Q is measured in volt - ampere reactive [VAr].
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The power triangle

S=VI* =VIel? =VI(cosp + jsing) = P + jQ
P = Re(g) ,Q = Im(g)

Power Triangle for an Inductive Load

[=)]

S is called is apparent power and is o e
complex number. | [Sm —
The power factor is the cosine of the / |
phase difference between voltage  ° /
and current. Hence, it is the cosine of | s/ o
the angle of the load impedance: /
P = VIcosp = |S|cose H /

P _ P 0 0 _ RNe
COSP =91 T |S]| P

-1 0 1 2 3 4 5 6

Trivially, the value of the power factor cosg ranges between 0 and 1.
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Power factor

e For a purely resistive load, the voltage and current are in phase,
l.e., ¢ = 0, — 6; = 0 and the power factor cosp = 1. Therefore the
apparent power is equal to the real (or active) power.

e For a purely reactive load ¢ = 6y, — 8; = +n/2 and the cosp = 0. In
this case the real power is zero.

e In between these two extreme cases the power factor is said to be
leading or lagging. Leading power factor means that the current
leads the voltage (i.e., the load is capacitive). Lagging power
factor means that the current lags the voltage (i.e., the load is
inductive).




Powers in AC circults ﬂ

Power factor

P PQ Vising
P =VIcosp = Scosp < cosp = VISP Vicose

= COS (tan_1 %)

[ - P
~ Vcosg

= tanp < cos@

At fixed P and V if cose |, then I T.

In general, the power factor of loads has to be as close as possible to
1 to reduce the magnitude of current supplying the loads (that
produces power losses into lines).

Some utilities request 1o pay the power factor utilized when its value is
below 0.9.
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Three phase AC circuits E

Voltages and currents in balanced+symmetrical 3-ph systems

The generation and the distribution of electrical energy is usually
done by three-phase systems. There are three wire systems
connected to a generator consisting of three AC sources having the
same amplitude and frequency (mostly 50 Hz in Europe as well as
most of Asia and Australia, and 60 Hz in North America and Canada)

but shifted in phase by%n (i.e., 120deg).



Three phase AC circuits m

Motivations

1. Itis easy to convert mechanical into electrical power and vice
versa, using rotating three phase machines.

2. For the same amount of transported power, a three phase line
uses less conductive material to build a corresponding single
phase line.

3. In 3-ph systems, the instantaneous power is constant, resulting in a
uniform transmission and less vibrations.

Phasor Diagram Time Domain
15 =~ L5
~Sm — wvilt)

—_ i)

1.0 A 1 Va | 1.0 — ve(f)

0.5 1 0.5
Ba

0.0

0.0 /
.

-1.0 A —1.0

_1.5 T T T T _1. 5 T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 15 0 5 10 15 20 25 30 35 40

Time (ms)




Three phase AC circuits E

Balanced and symmetrical 3-ph systems

Balanced System: in a balanced system, the sum of the three phasors
of currents or voltages is zero.

Symmetrical Systems: in a symmetrical system, the angles between
subsequent phasors of voltages or currents are equal.

Important:
1. A balanced system is not necessarily symmetrical.
2. A symmetrical system is not necessarily balanced.

3. In abalanced and symmetrical 3 phase system, the phases
between sub-sequent phasors of voltages and currents are equal

to %n and their magnitudes are identical.



Three phase AC circuits

Balanced and symmetrical 3-ph systems

1. A balanced system is not necessarily symmetrical.

Phasor Diagram Time Domain
1.5 = 1.5
A'm — V,(t)
— vp(t)
— Vc(t)
1.0 1.0 -
0.5 4 T a : 0.5 -
Re
0.0 o ——— 0.0
V¢ '
~0.5 b -0.5 -
—-1.0 -1.0 1
_1.5 T I T T _1.5 1 1 Ll T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 5 10 15 20 25 30 35 40

Time (ms)



Three phase AC circuits

Balanced and symmetrical 3-ph systems

2. A symmetrical system is not necessarily balanced.

Phasor Diagram Time Domain
1.5 ~ 1.5
~sm — V,(t)
— Vp(t)
- — V()
1.0 _ Va _ 1.0
0.5 0.5 -
Re
0.0 - 0.0 -
| - |
—0.5 1 —0.5 1
Vp
—-1.0 1 -1.0 1
'_]..5 T T T T '_1.5 T T T T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 5 10 15 20 25 30 35 40

Time (ms)
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Balanced and symmetrical 3-ph systems

3. In a balanced and symmetrical 3-ph system the phases have a
precise 120-degree phase separation.

Phasor Diagram Time Domain
1.5 = 1.5
‘\Sm — Va(t)
— vp(t)
- — V(1)
1.0 - Va 1.0 1 ‘
0.5 A 0.5 A
6a
Re
0.0 0.0 A
v
—0.5 A —0.5 1
Vb
—1.0 A —-1.0 A
_1.5 T I T T _1.5 1 1 Ll T T T T
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0 5 10 15 20 25 30 35 40

Time (ms)
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Voltages and currents in balanced 3-ph systems

The line currents i, (t),i,(t), and i.(t) are the currents flowing in
each of the three phases. For the system in the figure, by applying
the KCL, we get:

ia(®) +ip(t) +ic(t) =0
The phase-to-phase (or line-to-line) voltages v, (t), vy (t), v, (t) are

the voltage differences between terminals ab, bc and ca. For the
system in the figure, by applying the KVL, we get:

Vap () + vpc(t) + vgq(t) =0



Three phase AC circuits m

Voltages and currents in balanced 3-ph systems

We assume that the three-phase system is iso-frequency (i.e., the
three phase voltages and currents have the same frequency).
Therefore, the KCL and KVL written before can be also written in the
phasor domain:

I,+I,+1.=0, Vyup+Vy,+V,=0

As a conseguence, the three phase line currents can be represented
by the triangle of the line currents and the three phase-to-phase
voltages by the triangle of voltages:

\_/bc

Ib

\_/ab
Triangle of line currents Triangle of phase-to-phase voltages



Three phase AC circuits

Voltages and currents in balanced and symmetrical 3-ph n
systems

The single-phase voltage E,, E, E,. are the voltage difference
between the center 0 (see figure before) and the terminals a, b, c.
Single phase voltages: £, E},, E,.

Phase-to-phase voltage: V,,V, ., V.,

We olso hove that: Vi = V3|E|210° /B = |E|2240° < Vi = V3| E| £30°
V.a E —E, E, = |E| 0

B, = |E|/120%¢

‘/;J(‘, - \/§‘E| 1900



Three phase AC circuits

Voltages and currents in balanced and symmetrical 3-ph
systems

The total real and reactive powers in a three phase balanced and
symmetrical system where E and V are the RMS values of the single
phase and phase-to-phase voltages, respectively, is given by:

P = 3EIcosp = \/§V1cos<p
Q = 3EIsing = \/§Vlsing0

The power factor is:

cos® = cos (tan_1 <%>>



Three phase AC circuits

Y and A connections

a I, g Iq . a
Vab Vab
g I sz, h
Vie Vbe
C Ic C Ic
Connection | Voltage Across Impedance Current Across Impedance
Star E=V/V3 I
Delta V =+3E I/ V3
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