
Course of Power Systems Analysis

Fundamental aspects for the study of 
AC circuits

Prof. Mario Paolone

Distributed Electrical Systems Laboratory
École Polytechnique Fédérale de Lausanne (Switzerland)

2024-2025
Fall Semester



Outline

Introduction

Single-phase AC circuits

Powers in AC circuits

Three-phase AC circuits

2



Introduction
Waveforms in the time domain

The waveform of generic power systems’s quantities (e.g. a bus 

voltage or a line current) can be assumed to be purely 

sinusoidal and of constant frequency. 

𝑎 𝑡 = 𝐴𝑚𝑎𝑥 sin(𝜔𝑡 + 𝜃)

𝐴𝑚𝑎𝑥 ∈ ℝ+ amplitude: max value of 𝑎(𝑡). 
𝜔 ∈ ℝ+ angular frequency [1/s]

𝜃 ∈ ℝ phase angle [rad]
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𝑎(𝑡) = 𝐴𝑚𝑎𝑥 sin(𝜔𝑡 + 𝜃)

the period, in [s], of the waveform is defined as 𝑇 = 2𝜋/𝜔, and 

its frequency, in [Hz], as 𝑓 = 1/𝑇 = 𝜔/2𝜋.

Finally, the Root Mean Square (RMS) is:

𝐴 =
1

𝑇
∫
𝑡

𝑡+𝑇
𝐴𝑚𝑎𝑥
2 cos2(𝜔𝑡 + 𝜃)𝑑𝑡 =

𝐴𝑚𝑎𝑥

2
≅ 0.707𝐴𝑚𝑎𝑥
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Waveforms in the time domain



Introduction
Iso-frequency quantities

𝑎 𝑡 = 2 𝐴 sin(𝜔𝑡 + 𝜃𝑎)

𝑏 𝑡 = 2 𝐵 sin(𝜔𝑡 + 𝜃𝑏)

Note that 𝑎(𝑡) and 𝑏(𝑡) have the same

angular frequency. The phase angle shift 

between 𝑎(𝑡) and 𝑏(𝑡) is:

𝜑 = 𝜃𝑎 − 𝜃𝑏

With:

𝜑 = 0 𝑎(𝑡) and 𝑏(𝑡) are in phase.

𝜑 > 0 𝑎(𝑡) leads 𝑏(𝑡) by 𝜑.

𝜑 < 0 𝑎(𝑡) lags 𝑏(𝑡) by 𝜑.
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Introduction
Euler identity

For any real number 𝜃: 

𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃

where the inputs of the 

trigonometric functions sin
and cos are given in radians.
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Introduction
Euler identity
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Geometric interpretation:

Any complex number  𝑧 = 𝑧1 + 𝑗𝑧2  

can be represented in polar 

coordinates as  (𝑧, 𝜃𝑧) , where:

• 𝑧 = |𝑧|  is the distance from the 

origin 

• 𝜃 = ∠𝑧  is the angle 

counterclockwise from the 

positive 𝑥-axis).

According to Euler’s identify, this is 

equivalent to saying 

𝑧 = 𝑧𝑒𝑗𝜃 
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Sinusoids and phasors

𝑎 𝑡 = 2𝐴cos 𝜔𝑡 + 𝜃 = ℜ𝔢 2𝐴𝑒𝑗 𝜔𝑡+𝜃 = ℜ𝔢 2𝐴𝑒𝑗𝜃𝑒𝑗𝜔𝑡 = ℜ𝔢 2 𝐴𝑒𝑗𝜔𝑡

𝑎(𝑡) = 2𝐴sin(𝜔𝑡 + 𝜃) = ℑ𝔪 2𝐴𝑒𝑗(𝜔𝑡+𝜃) = ℑ𝔪 2𝐴𝑒𝑗𝜃𝑒𝑗𝜔𝑡 = ℑ𝔪 2 𝐴𝑒𝑗𝜔𝑡
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Sinusoids and phasors

Where the phasor is a current or a voltage given by:

ҧ𝐴 = 𝐴𝑒𝑗𝜃 = 𝐴(cos 𝜃 + 𝑗 sin 𝜃) = 𝐴∠𝜃

In other words, we have a bijective transformation between 

phasors and time-domain sinusoidal quantities.

𝑎 𝑡 = 𝐴𝑚𝑎𝑥sin(𝜔𝑡 + 𝜃) = ℑ𝔪 2 𝐴𝑒𝑗(𝜔𝑡+𝜃) = ℑ𝔪 2 𝐴𝑒𝑗𝜃𝑒𝑗𝜔𝑡 = ℑ𝔪 2 𝐴𝑒𝑗𝜔𝑡
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Time domain

𝑎(𝑡) = 2𝐴sin(𝜔𝑡 + 𝜃)

Introduction
Sinusoids and phasors

Phasor domain

ҧ𝐴 = 𝐴(cos 𝜃 + 𝑗 sin 𝜃)
ҧ𝐴 = 𝐴𝑒𝑗𝜃

ҧ𝐴 = 𝐴 ∠𝜃
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Geometric interpretation

𝐴 = 𝐴𝑒𝑗𝜃 = 𝐴(cos𝜃 + 𝑗sin𝜃) = 𝑎1 + 𝑗𝑎2

where:

𝑎1 = 𝐴 cos 𝜃

𝑎2 = 𝐴 sin𝜃

𝐴 = 𝑎1
2 + 𝑎2

2

𝜃 = tan−1
𝑏

𝑎
where 𝑎 > 0

Introduction
Complex plane

ҧ𝐴
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• Uniqueness:

Two sinusoids at the same frequency are equal if and 

only if they are represented by the same phasor:

𝑎(𝑡) = 𝑏(𝑡) ⟺ 𝐴 = 𝐵

• Linearity:

The linear combination of phasors represents the same 

linear combination of sinusoids at the same frequency

𝑐1𝑎 𝑡 + 𝑐2𝑏 𝑡 ⟺ 𝑐1𝐴 + 𝑐2𝐵, 𝑐1, 𝑐2 ∈ ℝ

• Derivative:

If 𝐴 is the phasor of 𝑎(𝑡), the time derivative of 𝑎(𝑡) is 

given by 𝑗𝜔𝐴.

Introduction
Phasors properties
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Single phase AC circuits
Electric voltage an potential difference

14

Voltage, or electric potential difference, between 
two points  𝐴 and 𝐵 say 𝑉𝐴𝐵, associated to an electric 
field 𝐄 is defined as the work done by an external 
force to move a unit positive charge (i.e., of 1 𝐶) 
from point  𝐴 to point  𝐵 without any acceleration:

𝑉𝐴𝐵 = ∫𝐴,𝑙
𝐵
𝐄 ⋅ 𝑑𝒍

where:
• 𝐄 is the electric field.

• 𝑑𝒍 is an infinitesimal vector element of the path from  𝐴 to  𝐵.

In electrostatics (and slowly time-varying phenomena), the electric 
field is conservative for which we have that:

∮𝐶𝐄 ⋅ 𝑑𝒍 = 0

This implies that 𝑉𝐴𝐵 is path-independent, therefore: 𝑉𝐴𝐵 = 𝑉𝐴 − 𝑉𝐵
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Electric current 𝑖 is defined as the rate at which charge 𝑞 passes 
through an oriented surface 𝑆 (see figure). Considering that the 
punctual charge flow rate defines the current density vector 𝐉, we get:

𝑖 = ඵ
𝑆

𝐉 ⋅ ෝ𝒏𝑑𝑆 =
𝑑𝑞

𝑑𝑡

where ෝ𝒏 is the unity vector perpendicular to a 
generic point on surface 𝑆.

For a surface 𝑆 perpendicular to the current 
density vector, assuming 𝐉 uniform across 𝑆, 
we have:

𝑖 = 𝜌𝐶𝑢𝑆 = |𝐉|𝑆

where 𝜌𝐶 is the charge density and 𝑢 is the 
velocity of the charge carriers.

Single phase AC circuits
Electric current



Kirchhoff’s Current Law (KCL) states that the sum of currents 
entering/leaving a node that has 𝑛 incident conductors, is zero.
KCL is a simple extension of the charge conservation principle.

෍

𝑘=1

𝑛

𝑖𝑘 = 0

Kirchhoff’s Voltage Law (KVL) states that the sum of voltages over 𝑚
generic branches that form a closed loop (or mesh) is zero.

෍

𝑘=1

𝑚

𝑣𝑘 = 0

Single phase AC circuits
Circuit analysis
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Single phase AC circuits
Voltages and currents
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Circuits where ouput voltages and current are linear combination of 
input voltages and currents, are, by definition, linear.

In a linear circuit, a sinusoidal current 𝑖(𝑡) corresponds to a sinusoidal 
voltage 𝑣(𝑡) at the same frequency with a different phase:

𝑣 𝑡 = 2 𝑉cos(𝜔𝑡 + 𝜃𝑉) = ℜ𝔢( 2 𝑉𝑒𝑗𝜔𝑡) with 𝑉 = 𝑉𝑒𝑗𝜃𝑉

𝑖 𝑡 = 2 𝐼cos(𝜔𝑡 + 𝜃𝐼) = ℜ𝔢( 2 𝐼𝑒𝑗𝜔𝑡) with 𝐼 = 𝐼𝑒𝑗𝜃𝐼



Single phase AC circuits
Generic impedance
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The equation linking voltage and current 
across a linear circuit composed by series 
resistances, inductances and 
capacitances in the time domain is:

𝑣 𝑡 = 𝐿
𝑑𝑖

𝑑𝑡
+
1

𝐶
න
−∞

𝑡

𝑖 𝜏 𝑑𝜏 + 𝑅𝑖(𝑡)

In the frequency domain, the equation 
becomes:

𝑉 = 𝑅 + 𝑗 𝜔𝐿 −
1

𝜔𝐶
𝐼 = 𝑍 𝐼

Where 𝑍 is the impedance (complex 
number). The latter equation is a simple 
algebraic equation, easy to solve.
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Resistor, inductor and capacitor

Resistor 𝑍 = 𝑅
• 𝑣(𝑡) and 𝑖(𝑡) are in phase

• 𝑍 is a real number
• 𝜑 = 0

Inductor 𝑍 = 𝑗𝜔𝐿
• 𝑣(𝑡) leads 𝑖(𝑡) by Τ𝜋 2

• 𝑍 is an imaginary number
• 𝜑 = 𝜋/2

• Capacitor 𝑍 = −𝑗
1

𝜔𝐶

• 𝑣(𝑡) lags 𝑖(𝑡) by Τ𝜋 2

• 𝑍 is an imaginary number
• 𝜑 = −𝜋/2



𝑍 = 𝑅 + 𝑗 𝜔𝐿 −
1

𝜔𝐶
= 𝑅 + 𝑗𝑋

• 𝑅 is the resistance [Ω]

• 𝑋 the reactance 𝑋 = 𝑋𝐿 − 𝑋𝐶 = 𝜔𝐿 −
1

𝜔𝐶

The reciprocal of impedance is the admittance: 𝑌 =
1

𝑍

Series of impedances: 

𝑍𝑒𝑞 = ∑
𝑘

ҧ𝑍𝑘

Parallel of impedances:
1

𝑍𝑒𝑞
= ∑

𝑘

1

ҧ𝑍𝑘

Single phase AC circuits
Generic impedance
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𝑣 𝑡 = 2𝑉cos 𝜔𝑡 + 𝜃𝑉 = ℜ𝔢 2 𝑉𝑒𝑗𝜔𝑡 → 𝑉 = 𝑉𝑒𝑗𝜃𝑉

𝑖 𝑡 = 2𝐼cos 𝜔𝑡 + 𝜃𝐼 = ℜ𝔢 2 𝐼𝑒𝑗𝜔𝑡 → 𝐼 = 𝐼𝑒𝑗𝜃𝐼

From the definition of impedance:

𝑉

𝐼
=
𝑉

𝐼
𝑒𝑗(𝜃𝑉−𝜃𝐼) =

𝑉

𝐼
𝑒𝑗𝜑 = 𝑍

21Single phase AC circuits
Generic impedance

Therefore the phase shift angle:
𝜑 = 𝜃𝑉 − 𝜃𝐼 

between current and voltage 
phasors is also the angle of the load 
impedance.
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Circuit analysis

in time domain

KCL 

+

KVL

+

𝑣𝑟 = 𝑓𝑡(𝑖𝑟)

∀ element 𝑟

Time to phasor 

transform

KCL 

+

KVL

+

𝑉𝑟 = 𝑓𝑝(𝐼𝑟)

∀ element 𝑟

Solution

and 

Inverse transformation 

from the

phasor domain
to the

time domain

𝑓𝑡  is an integro-

differential 

equation

𝑓𝑝 is an algebraic 

equation

Single phase AC circuits
Circuit analysis
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𝑣 𝑡 = 𝑉𝑚𝑎𝑥 cos 𝜔𝑡 and  𝑖 𝑡 = 𝐼𝑚𝑎𝑥 cos 𝜔𝑡 − 𝜑
𝑖(𝑡) can be transformed as:
𝑖 𝑡 = 𝐼𝑚𝑎𝑥(cos𝜔𝑡 cos𝜑 + sin𝜔𝑡 sin𝜑) =

= 𝐼𝑚𝑎𝑥 cos𝜑 cos𝜔t + 𝐼𝑚𝑎𝑥 sin𝜑 sin𝜔𝑡 = 𝑖𝑎(𝑡) + 𝑖𝑟(𝑡)

24Powers in AC circuits
Decomposition of current with respect to voltage

𝑖𝑎(𝑡) is the current component in phase with voltage, and  𝑖𝑟(𝑡) the 
component out of phase with voltage.



The instantaneous power is defined as the 
product of the istantaneous voltage and 
current:

𝑝(𝑡) = 𝑣(𝑡)𝑖(𝑡)

And it is easy to show that it is the sum of:
• the instantaneous in phase power 𝑝𝑎(𝑡)
• the instantaneous reactive power 𝑝𝑟(𝑡)

𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡 = 𝑣(𝑡)𝑖𝑎(𝑡) + 𝑣(𝑡)𝑖𝑟(𝑡)
= 𝑝𝑎(𝑡) + 𝑝𝑟(𝑡)

Observations:
• The average value avg 𝑝𝑎(𝑡) ≠ 0.
• 𝑝𝑟(𝑡) ≠ 0 if 𝜑 ≠ 0, namely if 𝐿, 𝐶 ≠ 0.
• The average value avg 𝑝𝑟(𝑡) = 0→there is 

energy flowing into the circuit element (𝐿 or 𝐶)
for half period and outside of it for the next half 
period.

25Powers in AC circuits
Instantaneous power



Let’s visualise the instantaneous power and recall that it is the sum of:
• the instantaneous in phase power 𝑝𝑎(𝑡)
• the instantaneous reactive power 𝑝𝑟(𝑡).

𝑝 𝑡 = 𝑣 𝑡 𝑖 𝑡 = 𝑣 𝑡 𝑖𝑎(𝑡) + 𝑣(𝑡) 𝑖𝑟(𝑡) = 𝑝𝑎(𝑡) + 𝑝𝑟(𝑡)

26Powers in AC circuits
Instantaneous power



The average power 𝑃, also known as real power, is the average of 
the instantaneous power over one period 𝑇.

𝑃 =
1

𝑇
∫𝑡0
𝑡0+𝑇𝑝(𝜏)𝑑𝜏 =

1

𝑇
∫𝑡0
𝑡0+𝑇[𝑝𝑎(𝜏) + 𝑝𝑟(𝜏)]𝑑𝜏 =

1

𝑇
∫𝑡0
𝑡0+𝑇𝑝𝑎(𝜏)𝑑𝜏

Since 𝑝𝑎 𝑡 = 𝑉𝑚𝑎𝑥 cos𝜔t 𝐼𝑚𝑎𝑥cos𝜑 cos𝜔t = 𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥 cos𝜑 cos2𝜔𝑡, we get:

𝑃 =
1

2
𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥cos𝜑 = 𝑉𝐼 cos𝜑

where 𝑉 and 𝐼 are the RMS values of the voltage and the current, 
respectively. In the SI System of Units real power is measured in Watt 
[W].

27Powers in AC circuits
Real (or active) power



The reactive power 𝑄 is the maximum value of the instantaneous 
reactive power 𝑝𝑟(𝑡):

𝑄 = max 𝑝𝑟(𝑡) ⋅ sign 𝜑 = max 𝑉𝑚𝑎𝑥 cos𝜔t 𝐼𝑚𝑎𝑥 sin𝜑 sin𝜔𝑡 ⋅ sign 𝜑 =

= max 𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥 sin𝜑
sin(2𝜔t)

2
⋅ sign 𝜑 =

1

2
𝑉𝑚𝑎𝑥𝐼𝑚𝑎𝑥sin𝜑 = 𝑉𝐼sin𝜑

𝑄 is the maximum value of the power exchanged by an inductive or 
capacitive circuit element with the circuit sources (or with the 
network to which the element is connected).

𝑄 can be positive or negative depending on the sign of 𝜑. For an 
inductive load, 𝑄 is assumed to be positive by convention and for a 
capacitive load 𝑄 is assumed to be negative.

In the SI system, 𝑄 is measured in volt - ampere reactive [VAr].

28Powers in AC circuits
Reactive power
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ҧ𝑆 = ത𝑉 ഥ𝐼∗ = 𝑉𝐼𝑒𝑗𝜑 = 𝑉𝐼 cos𝜑 + 𝑗sin𝜑 = 𝑃 + 𝑗𝑄

𝑃 = 𝑅𝑒(𝑆) ,𝑄 = 𝐼𝑚(𝑆)

ҧ𝑆 is called is apparent power and is a
complex number.

Powers in AC circuits
The power triangle

The power factor is the cosine of the 
phase difference between voltage 
and current. Hence, it is the cosine of 
the angle of the load impedance: 
𝑃 = 𝑉𝐼cos𝜑 = ҧ𝑆 cos𝜑

cos𝜑 =
𝑃

𝑉𝐼
=

𝑃

ҧ𝑆

Trivially, the value of the power factor cos𝜑 ranges between 0 and 1.
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• For a purely resistive load, the voltage and current are in phase, 
i.e., 𝜑 = 𝜃𝑉 − 𝜃𝐼 = 0 and the power factor cos𝜑 = 1. Therefore the 
apparent power is equal to the real (or active) power.

• For a purely reactive load 𝜑 = 𝜃𝑉 − 𝜃𝐼 = ±𝜋/2 and the cos𝜑 = 0. In 
this case the real power is zero. 

• In between these two extreme cases the power factor is said to be 
leading or lagging. Leading power factor means that the current 
leads the voltage (i.e., the load is capacitive). Lagging power 
factor means that the current lags the voltage (i.e., the load is
inductive). 

Powers in AC circuits
Power factor



31

𝑃 = 𝑉𝐼cos𝜑 = 𝑆cos𝜑 ⟺ cos𝜑 =
𝑃

𝑉𝐼
=
𝑃

𝑆

𝑄

𝑃
=
𝑉𝐼sin𝜑

𝑉𝐼cos𝜑
= tan𝜑 ⟺ cos𝜑

= cos tan−1
𝑄

𝑃

𝐼 =
𝑃

𝑉cos𝜑

At fixed 𝑃 and 𝑉 if cos𝜑 ↓, then 𝐼 ↑.

In general, the power factor of loads has to be as close as possible to 
1 to reduce the magnitude of current supplying the loads (that 
produces power losses into lines).
Some utilities request to pay the power factor utilized when its value is 
below 0.9.

Powers in AC circuits
Power factor
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The generation and the distribution of electrical energy is usually 
done by three-phase systems. There are three wire systems 
connected to a generator consisting of three AC sources having the 
same amplitude and frequency (mostly 50 𝐻z in Europe as well as 
most of Asia and Australia, and 60 𝐻𝑧 in North America and Canada) 

but shifted in phase by 
2

3
𝜋 (i.e., 120𝑑𝑒𝑔).

Three phase AC circuits
Voltages and currents in balanced+symmetrical 3-ph systems



1. It is easy to convert mechanical into electrical power and vice 
versa, using rotating three phase machines.

2. For the same amount of transported power, a three phase line 
uses less conductive material to build a corresponding single 
phase line.

3. In 3-ph systems, the instantaneous power is constant, resulting in a 
uniform transmission and less vibrations.

34Three phase AC circuits
Motivations



35Three phase AC circuits
Balanced and symmetrical 3-ph systems

Balanced System: in a balanced system, the sum of the three phasors 
of currents or voltages is zero. 

Symmetrical Systems: in a symmetrical system, the angles between 
subsequent phasors of voltages or currents are equal.

Important:

1. A balanced system is not necessarily symmetrical.

2. A symmetrical system is not necessarily balanced.

3. In a balanced and symmetrical 3 phase system, the phases 
between sub-sequent phasors of voltages and currents are equal 

to 
2

3
𝜋 and their magnitudes are identical.



36Three phase AC circuits
Balanced and symmetrical 3-ph systems

1. A balanced system is not necessarily symmetrical.



37Three phase AC circuits
Balanced and symmetrical 3-ph systems

2. A symmetrical system is not necessarily balanced.



38Three phase AC circuits
Balanced and symmetrical 3-ph systems

3. In a balanced and symmetrical 3-ph system the phases have a 
precise 120-degree phase separation.



The line currents 𝑖𝑎(𝑡), 𝑖𝑏(𝑡), and 𝑖𝑐(𝑡) are the currents flowing in 
each of the three phases. For the system in the figure, by applying 
the KCL, we get:

𝑖𝑎 𝑡 + 𝑖𝑏 𝑡 + 𝑖𝑐 𝑡 = 0

The phase-to-phase (or line-to-line) voltages 𝑣𝑎𝑏(𝑡), 𝑣𝑏𝑐(𝑡), 𝑣𝑐𝑎(𝑡) are 
the voltage differences between terminals 𝑎𝑏, 𝑏𝑐 and 𝑐𝑎. For the 
system in the figure, by applying the KVL, we get:

𝑣𝑎𝑏 𝑡 + 𝑣𝑏𝑐 𝑡 + 𝑣𝑐𝑎 𝑡 = 0

39Three phase AC circuits
Voltages and currents in balanced 3-ph systems
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We assume that the three-phase system is iso-frequency (i.e., the 
three phase voltages and currents have the same frequency).
Therefore, the KCL and KVL written before can be also written in the 
phasor domain:

ҧ𝐼𝑎 + ҧ𝐼𝑏 + ҧ𝐼𝑐 = 0, ത𝑉𝑎𝑏+ത𝑉𝑏𝑐 + ത𝑉𝑐𝑎 = 0

As a consequence, the three phase line currents can be represented 
by the triangle of the line currents and the three phase-to-phase 
voltages by the triangle of voltages:

Three phase AC circuits
Voltages and currents in balanced 3-ph systems

Triangle of line currents Triangle of phase-to-phase voltages



The single-phase voltage ത𝐸𝑎, ത𝐸𝑏, ത𝐸𝑐 are the voltage difference 
between the center 𝑂 (see figure before) and the terminals 𝑎, 𝑏, 𝑐.
Single phase voltages: ത𝐸𝑎, ത𝐸𝑏, ത𝐸𝑐
Phase-to-phase voltage: ത𝑉𝑎𝑏, ത𝑉𝑏𝑐, ത𝑉𝑐𝑎

We also have that:

𝑉𝑎𝑏 = 𝐸𝑎 − 𝐸𝑏
𝑉𝑏𝑐 = 𝐸𝑏 − 𝐸𝑐
𝑉𝑐𝑎 = 𝐸𝑐 − 𝐸𝑎

41
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The total real and reactive powers in a three phase balanced and 
symmetrical system where 𝐸 and 𝑉 are the RMS values of the single 
phase and phase-to-phase voltages, respectively, is given by:

𝑃 = 3𝐸𝐼cos𝜑 = 3𝑉𝐼cos𝜑

𝑄 = 3𝐸𝐼sin𝜑 = 3𝑉𝐼sin𝜑

The power factor is:

cos𝜙 = cos tan−1
𝑄

𝑃
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