

2024-2025 Fall Semester Course of Power Systems Analysis

Fundamental aspects for the study of AC circuits

Prof. Mario Paolone

Distributed Electrical Systems Laboratory École Polytechnique Fédérale de Lausanne (Switzerland)

Outline

Introduction

Single-phase AC circuits

Powers in AC circuits

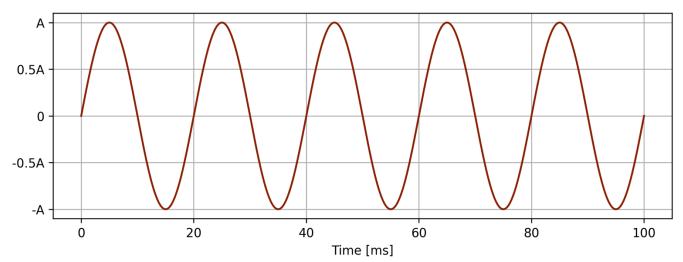
Three-phase AC circuits

Waveforms in the time domain

The waveform of generic power systems's quantities (e.g. a bus voltage or a line current) can be assumed to be **purely** sinusoidal and of constant frequency.

$$a(t) = A_{max} \sin(\omega t + \theta)$$

 $A_{max} \in \mathbb{R}^+$ amplitude: max value of a(t). $\omega \in \mathbb{R}^+$ angular frequency [1/s] $\theta \in \mathbb{R}$ phase angle [rad]

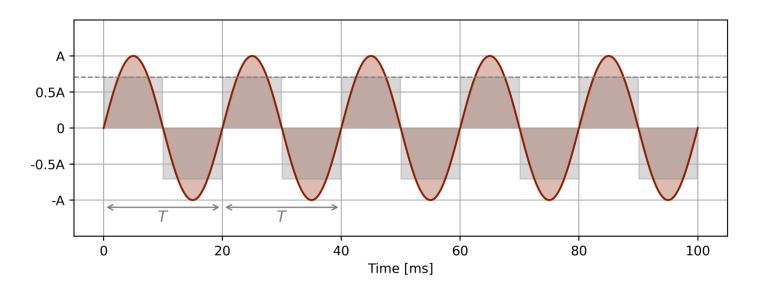


Waveforms in the time domain

$$a(t) = A_{max} \sin(\omega t + \theta)$$

the period, in [s], of the waveform is defined as $T=2\pi/\omega$, and its frequency, in [Hz], as $f=1/T=\omega/2\pi$. Finally, the Root Mean Square (RMS) is:

$$A = \sqrt{\frac{1}{T}} \int_{t}^{t+T} A_{max}^{2} \cos^{2}(\omega t + \theta) dt = \frac{A_{max}}{\sqrt{2}} \approx 0.707 A_{max}$$



Iso-frequency quantities

$$a(t) = \sqrt{2} A \sin(\omega t + \theta_a)$$

$$b(t) = \sqrt{2} B \sin(\omega t + \theta_b)$$

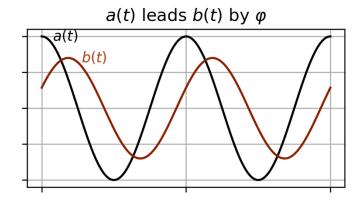
Note that a(t) and b(t) have the same angular frequency. The phase angle shift between a(t) and b(t) is:

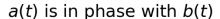
$$\varphi = \theta_a - \theta_b$$

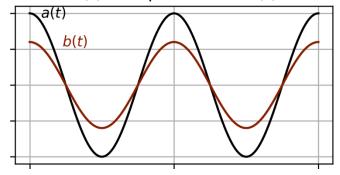
$$\varphi = 0$$
 $a(t)$ and $b(t)$ are in phase.

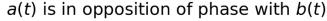
$$\varphi > 0$$
 $a(t)$ leads $b(t)$ by φ .

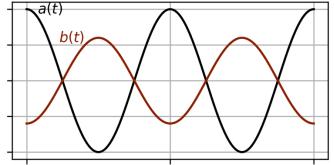
$$\varphi < 0$$
 $a(t) \log b(t)$ by φ .









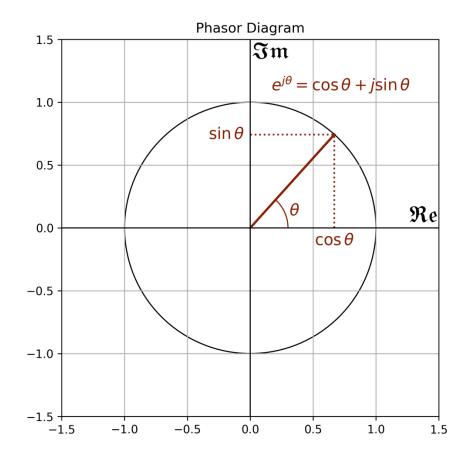


Euler identity

For any real number θ :

$$e^{j\theta} = \cos\theta + j\sin\theta$$

where the inputs of the trigonometric functions sin and cos are given in radians.



Euler identity

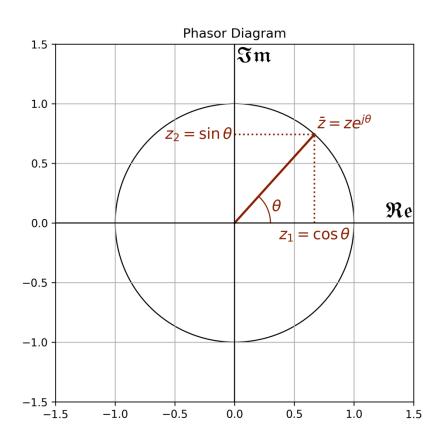
Geometric interpretation:

Any complex number $\overline{z} = z_1 + jz_2$ can be represented in polar coordinates as (z, θ_z) , where:

- $z = |\overline{z}|$ is the distance from the origin
- $\theta = \angle \overline{z}$ is the angle counterclockwise from the positive x-axis).

According to Euler's identify, this is equivalent to saying

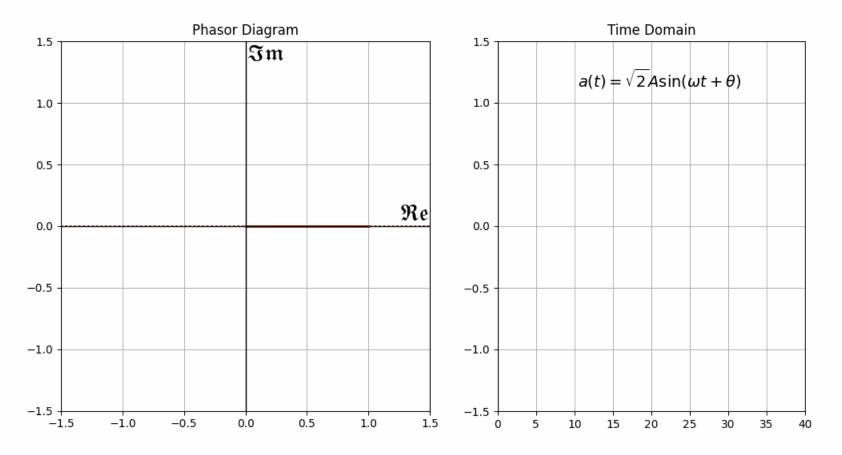
$$\overline{z} = ze^{j\theta}$$



Sinusoids and phasors

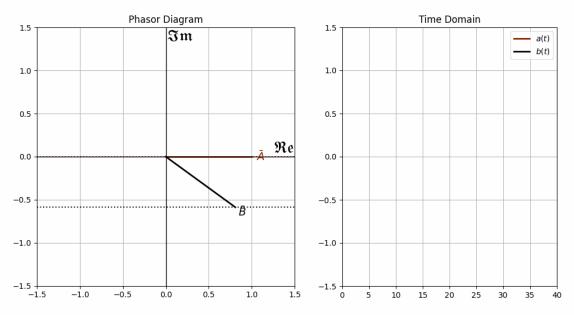
$$a(t) = \sqrt{2}A\cos(\omega t + \theta) = \Re \left[\sqrt{2}Ae^{j(\omega t + \theta)}\right] = \Re \left[\sqrt{2}Ae^{j\theta}e^{j\omega t}\right] = \Re \left[\sqrt{2}\overline{A}e^{j\omega t}\right]$$

$$a(t) = \sqrt{2} A \sin(\omega t + \theta) = \Im m \left[\sqrt{2} A e^{j(\omega t + \theta)} \right] = \Im m \left[\sqrt{2} A e^{j\theta} e^{j\omega t} \right] = \Im m \left[\sqrt{2} \overline{A} e^{j\omega t} \right]$$



Sinusoids and phasors

$$a(t) = A_{max}\sin(\omega t + \theta) = \Im \left[\sqrt{2} A e^{j(\omega t + \theta)}\right] = \Im \left[\sqrt{2} A e^{j\theta} e^{j\omega t}\right] = \Im \left[\sqrt{2} A e^{j\omega t}\right]$$

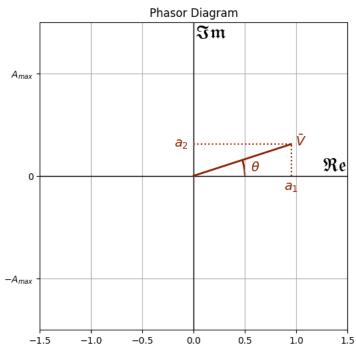


Where the phasor is a current or a voltage given by:

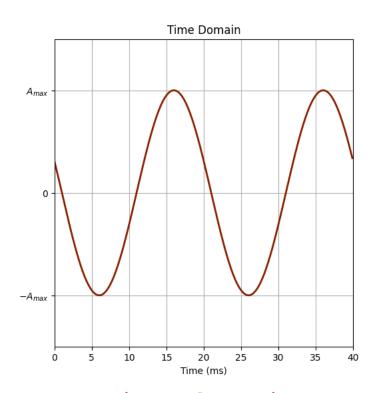
$$\bar{A} = Ae^{j\theta} = A(\cos\theta + j\sin\theta) = A\angle\theta$$

In other words, we have a bijective transformation between phasors and time-domain sinusoidal quantities.

Sinusoids and phasors



$$ar{A} = A(\cos\theta + j\sin\theta)$$
 $ar{A} = Ae^{j\theta}$
 $ar{A} = A \angle \theta$



Time domain

$$a(t) = \sqrt{2}A\sin(\omega t + \theta)$$

Complex plane

Geometric interpretation

$$\overline{A} = Ae^{j\theta} = A(\cos\theta + j\sin\theta) = a_1 + ja_2$$

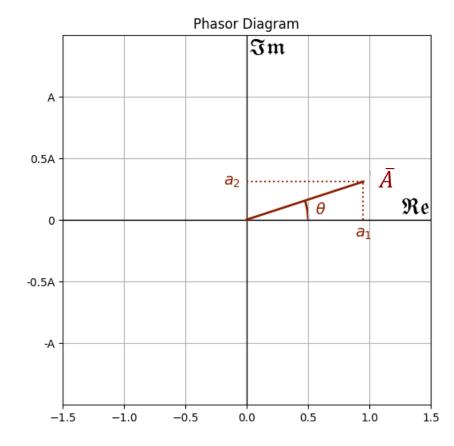
where:

$$a_1 = A \cos \theta$$

$$a_2 = A \sin \theta$$

$$A = \sqrt{a_1^2 + a_2^2}$$

$$\theta = \tan^{-1} \frac{b}{a}$$
 where $a > 0$



Phasors properties

Uniqueness:

Two sinusoids at the same frequency are equal if and only if they are represented by the same phasor:

$$a(t) = b(t) \Leftrightarrow \overline{A} = \overline{B}$$

Linearity:

The linear combination of phasors represents the same linear combination of sinusoids at the same frequency

$$c_1 a(t) + c_2 b(t) \iff c_1 \overline{A} + c_2 \overline{B}, c_1, c_2 \in \mathbb{R}$$

• Derivative:

If \overline{A} is the phasor of a(t), the time derivative of a(t) is given by $j\omega\overline{A}$.

Outline

Introduction

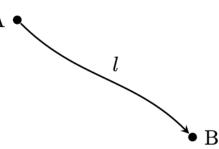
Single-phase AC circuits

Powers in AC circuits

Three-phase AC circuits

Electric voltage an potential difference

Voltage, or **electric potential difference**, between A two points A and B say V_{AB} , associated to an electric field E is defined as the work done by an external force to move a unit positive charge (i.e., of 1 C) from point A to point B without any acceleration:



$$V_{AB} = \int_{AI}^{B} \mathbf{E} \cdot d\mathbf{l}$$

where:

- E is the electric field.
- dl is an infinitesimal vector element of the path from A to B.

In **electrostatics** (and **slowly time-varying phenomena**), the electric field is **conservative** for which we have that:

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = 0$$

This implies that V_{AB} is **path-independent**, therefore: $V_{AB} = V_A - V_B$

Electric current

Electric **current** i is defined as the rate at which charge q passes through an oriented surface S (see figure). Considering that the **punctual charge flow rate defines** the **current density** vector J, we get:

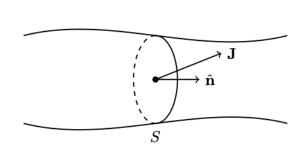
$$i = \iint_{S} \mathbf{J} \cdot \widehat{\boldsymbol{n}} dS = \frac{dq}{dt}$$

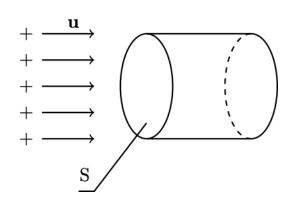
where \hat{n} is the unity vector perpendicular to a generic point on surface S.

For a surface *S* perpendicular to the current density vector, assuming **J** uniform across *S*, we have:

$$i = \rho_C u S = |\mathbf{J}| S$$

where $\rho_{\mathcal{C}}$ is the charge density and u is the velocity of the charge carriers.





Circuit analysis

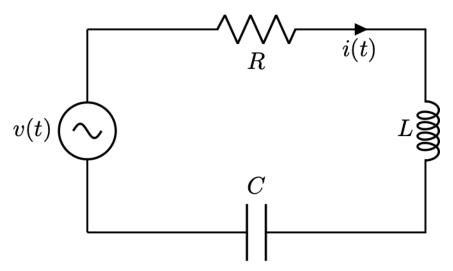
Kirchhoff's Current Law (KCL) states that the sum of currents entering/leaving a node that has n incident conductors, is zero. KCL is a simple extension of the charge conservation principle.

$$\sum_{k=1}^{n} i_k = 0$$

Kirchhoff's Voltage Law (KVL) states that the sum of voltages over m generic branches that form a closed loop (or mesh) is zero.

$$\sum_{k=1}^{m} v_k = 0$$

Voltages and currents



Circuits where ouput voltages and current are linear combination of input voltages and currents, are, by definition, linear.

In a linear circuit, a sinusoidal current i(t) corresponds to a sinusoidal voltage v(t) at the same frequency with a different phase:

$$\begin{split} v(t) &= \sqrt{2} \, V \mathrm{cos}(\omega t + \theta_V) = \Re \mathrm{e}(\sqrt{2} \, \overline{V} e^{j\omega t}) & \text{with } \overline{V} = V e^{j\theta_V} \\ i(t) &= \sqrt{2} \, I \mathrm{cos}(\omega t + \theta_I) = \Re \mathrm{e}(\sqrt{2} \, \overline{I} e^{j\omega t}) & \text{with } \overline{I} = I e^{j\theta_I} \end{split}$$

Generic impedance

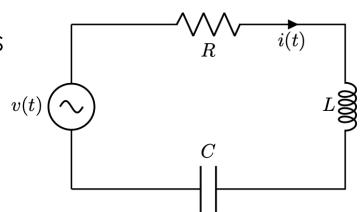
The equation linking voltage and current across a linear circuit composed by series resistances, inductances and capacitances in the time domain is:

$$v(t) = L\frac{di}{dt} + \frac{1}{C} \int_{-\infty}^{t} i(\tau)d\tau + Ri(t)$$

In the frequency domain, the equation becomes:

$$\overline{V} = \left[R + j \left(\omega L - \frac{1}{\omega C} \right) \right] \overline{I} = \overline{Z} \overline{I}$$

Where \overline{Z} is the impedance (complex number). The latter equation is a simple algebraic equation, easy to solve.



Resistor, inductor and capacitor

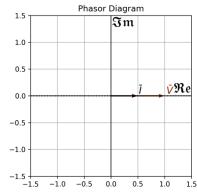
Resistor $\overline{Z} = R$

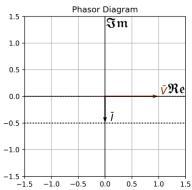
- v(t) and i(t) are in phase
- \overline{Z} is a real number
- $\varphi = 0$

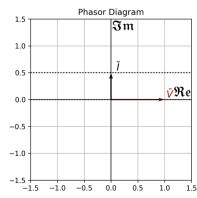
Inductor $\overline{Z} = j\omega L$

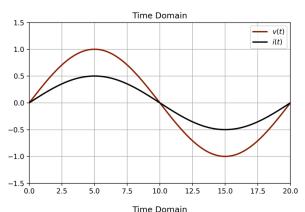
- v(t) leads i(t) by $\pi/2$
- \overline{Z} is an imaginary number
- $\varphi = \pi/2$

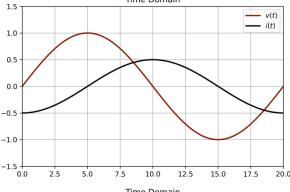
- v(t) lags i(t) by $\pi/2$
- \overline{Z} is an imaginary number
- $\varphi = -\pi/2$

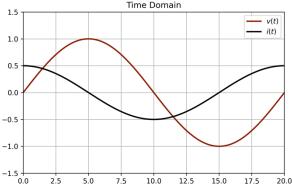








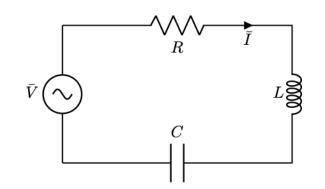




Generic impedance

$$\overline{Z} = R + j\left(\omega L - \frac{1}{\omega C}\right) = R + jX$$

- R is the resistance $[\Omega]$
- X the reactance $X = X_L X_C = \omega L \frac{1}{\omega C}$



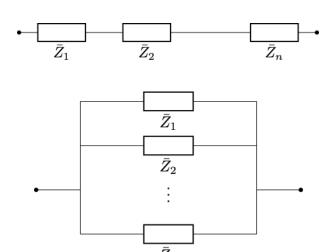
The reciprocal of impedance is the admittance: $\overline{Y} = \frac{1}{\overline{z}}$

Series of impedances:

$$\overline{Z}_{eq} = \sum_{k} \overline{Z}_{k}$$

Parallel of impedances:

$$\frac{1}{\overline{Z}_{eq}} = \sum_{k} \frac{1}{\overline{Z}_{k}}$$



Generic impedance

$$v(t) = \sqrt{2}V\cos(\omega t + \theta_V) = \Re(\sqrt{2}\,\overline{V}e^{j\omega t}) \to \overline{V} = Ve^{j\theta_V}$$
$$i(t) = \sqrt{2}I\cos(\omega t + \theta_I) = \Re(\sqrt{2}\,\overline{I}e^{j\omega t}) \to \overline{I} = Ie^{j\theta_I}$$

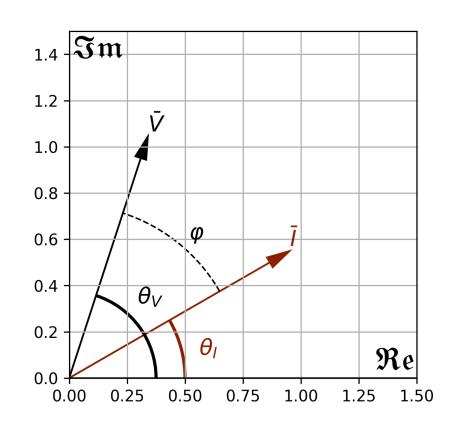
From the definition of impedance:

$$\frac{\overline{V}}{\overline{I}} = \frac{V}{I} e^{j(\theta_V - \theta_I)} = \frac{V}{I} e^{j\varphi} = \overline{Z}$$

Therefore the **phase shift angle:**

$$\varphi = \theta_V - \theta_I$$

between current and voltage phasors is also the **angle of the load impedance**.



Circuit analysis

Circuit analysis in time domain

KCL

┿

KVL

+

$$v_r = f_t(i_r)$$

 \forall element r

 f_t is an integrodifferential equation

Time to phasor transform

KCL

⊢

KVL

+

$$\overline{V}_r = f_p(\overline{I}_r)$$

 \forall element r

 f_p is an algebraic equation

Solution

and
Inverse transformation
from the
phasor domain
to the
time domain

Outline

Introduction

Single-phase AC circuits

Powers in AC circuits

Three-phase AC circuits

i(t)

v(t)

Powers in AC circuits

Decomposition of current with respect to voltage

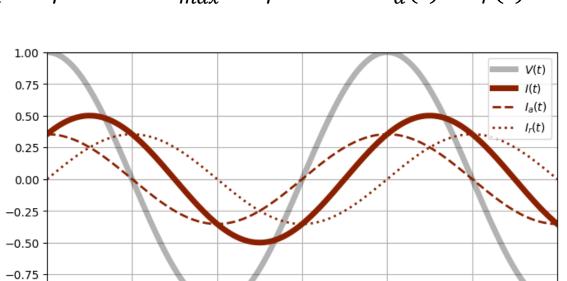
 $v(t) = V_{max} \cos(\omega t)$ and $i(t) = I_{max} \cos(\omega t - \varphi)$ i(t) can be transformed as:

$$i(t) = I_{max}(\cos\omega t \cos\varphi + \sin\omega t \sin\varphi) =$$

-1.00

 $= I_{max} \cos \varphi \cos \omega t + I_{max} \sin \varphi \sin \omega t = i_a(t) + i_r(t)$

10



 $i_a(t)$ is the current component in phase with voltage, and $i_r(t)$ the component out of phase with voltage.

15

Time (ms)

20

25

Instantaneous power

The **instantaneous power** is defined as the product of the istantaneous voltage and current:

$$p(t) = v(t)i(t)$$

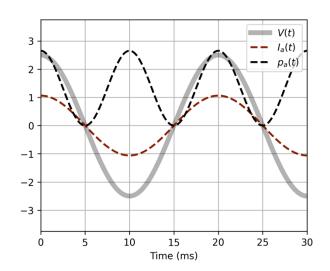
And it is easy to show that it is the sum of:

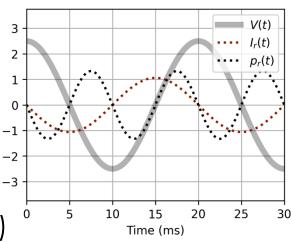
- the instantaneous in phase power $p_a(t)$
- the instantaneous reactive power $p_r(t)$

$$p(t) = v(t)i(t) = v(t)i_a(t) + v(t)i_r(t)$$
$$= p_a(t) + p_r(t)$$

Observations:

- The average value $avg(p_a(t)) \neq 0$.
- $p_r(t) \neq 0$ if $\varphi \neq 0$, namely if $L, C \neq 0$.
- The average value $avg(p_r(t)) = 0$ \rightarrow there is energy flowing into the circuit element (L or C) for half period and outside of it for the next half period.



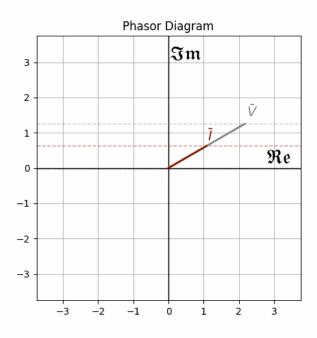


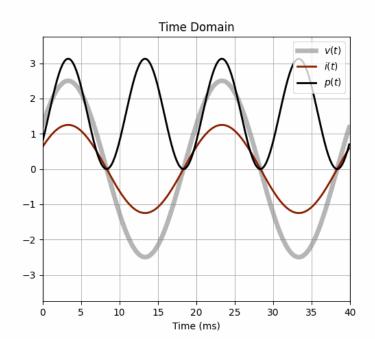
Instantaneous power

Let's visualise the **instantaneous power** and recall that it is the sum of:

- the instantaneous in phase power $p_a(t)$
- the instantaneous reactive power $p_r(t)$.

$$p(t) = v(t) i(t) = v(t) i_a(t) + v(t) i_r(t) = p_a(t) + p_r(t)$$





Real (or active) power

The average power P, also known as **real power**, is the average of the instantaneous power over one period T.

$$P = \frac{1}{T} \int_{t_0}^{t_0 + T} p(\tau) d\tau = \frac{1}{T} \int_{t_0}^{t_0 + T} [p_a(\tau) + p_r(\tau)] d\tau = \frac{1}{T} \int_{t_0}^{t_0 + T} p_a(\tau) d\tau$$

Since $p_a(t) = V_{max} \cos \omega t I_{max} \cos \varphi \cos \omega t = V_{max} I_{max} \cos \varphi \cos^2 \omega t$, we get:

$$P = \frac{1}{2}V_{max}I_{max}\cos\varphi = VI\cos\varphi$$

where *V* and *I* are the **RMS** values of the voltage and the current, respectively. In the SI System of Units real power is measured in **Watt** [W].

Reactive power

The **reactive power** Q is the maximum value of the instantaneous reactive power $p_r(t)$:

$$Q = \max[p_r(t)] \cdot sign(\varphi) = \max[V_{max} \cos \omega t \ I_{max} \sin \varphi \sin \omega t] \cdot sign(\varphi) =$$

$$= \max\left[V_{max}I_{max} \sin \varphi \frac{\sin(2\omega t)}{2}\right] \cdot sign(\varphi) = \frac{1}{2}V_{max}I_{max} \sin \varphi = VI \sin \varphi$$

Q is the maximum value of the power exchanged by an inductive or capacitive circuit element with the circuit sources (or with the network to which the element is connected).

Q can be positive or negative depending on the sign of φ . For an inductive load, Q is assumed to be positive by convention and for a capacitive load Q is assumed to be negative.

In the SI system, Q is measured in **volt - ampere reactive** [VAr].

The power triangle

$$\bar{S} = \bar{V} \bar{I}^* = VIe^{j\varphi} = VI(\cos\varphi + j\sin\varphi) = P + jQ$$

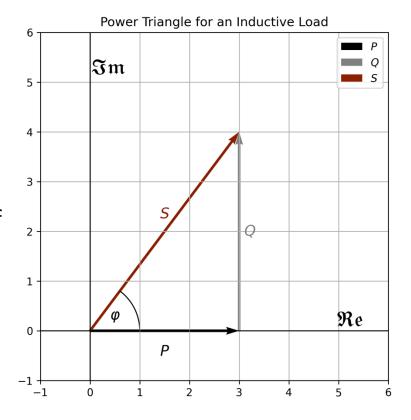
$$P = Re(\overline{S})$$
 , $Q = Im(\overline{S})$

 \bar{S} is called is **apparent power** and is a complex number.

The **power factor** is the cosine of the phase difference between voltage and current. Hence, it is the cosine of the angle of the load impedance:

$$P = VI\cos\varphi = |\bar{S}|\cos\varphi$$

$$\cos\varphi = \frac{P}{VI} = \frac{P}{|\bar{S}|}$$



Trivially, the value of the power factor $\cos \varphi$ ranges between 0 and 1.

Power factor

- For a **purely resistive load**, the voltage and current are in phase, i.e., $\varphi = \theta_V \theta_I = 0$ and the power factor $\cos \varphi = 1$. Therefore the apparent power is equal to the real (or active) power.
- For a purely reactive load $\varphi = \theta_V \theta_I = \pm \pi/2$ and the $\cos \varphi = 0$. In this case the real power is zero.
- In between these two extreme cases the power factor is said to be leading or lagging. Leading power factor means that the current leads the voltage (i.e., the load is capacitive). Lagging power factor means that the current lags the voltage (i.e., the load is inductive).

Power factor

$$P = VI\cos\varphi = S\cos\varphi \iff \cos\varphi = \frac{P}{VI} = \frac{P}{S}\frac{Q}{P} = \frac{VI\sin\varphi}{VI\cos\varphi} = \tan\varphi \iff \cos\varphi$$
$$= \cos\left(\tan^{-1}\frac{Q}{P}\right)$$
$$I = \frac{P}{V\cos\varphi}$$

At fixed P and V if $\cos \varphi \downarrow$, then I \(\frac{1}{2}\).

In general, the power factor of loads has to be as close as possible to 1 to reduce the magnitude of current supplying the loads (that produces power losses into lines).

Some utilities request to pay the power factor utilized when its value is below 0.9.

Outline

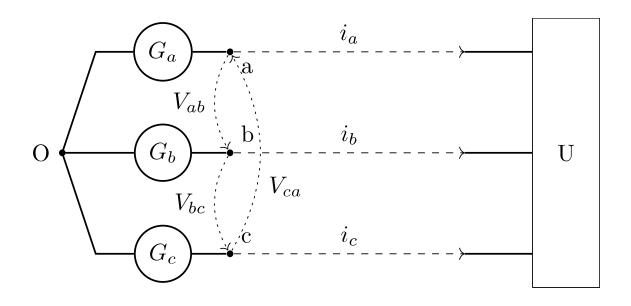
Introduction

Single-phase AC circuits

Powers in AC circuits

Three-phase AC circuits

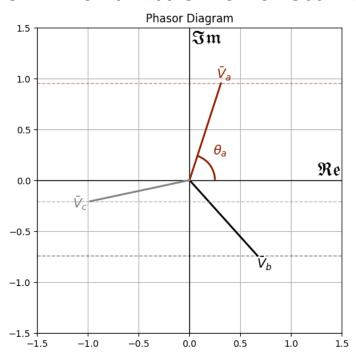
Voltages and currents in balanced+symmetrical 3-ph systems

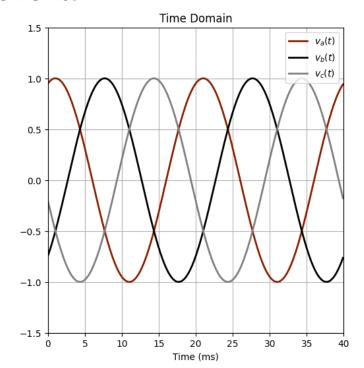


The generation and the distribution of electrical energy is usually done by **three-phase systems**. There are three wire systems connected to a generator consisting of three AC sources having the same amplitude and frequency (mostly 50~Hz in Europe as well as most of Asia and Australia, and 60~Hz in North America and Canada) but shifted in phase by $\frac{2}{3}\pi$ (i.e., 120deg).

Motivations

- 1. It is easy to convert mechanical into electrical power and vice versa, using rotating three phase machines.
- 2. For the same amount of transported power, a three phase line uses less conductive material to build a corresponding single phase line.
- 3. In 3-ph systems, the instantaneous power is constant, resulting in a uniform transmission and less vibrations.





Balanced and symmetrical 3-ph systems

Balanced System: in a balanced system, the sum of the three phasors of currents or voltages is zero.

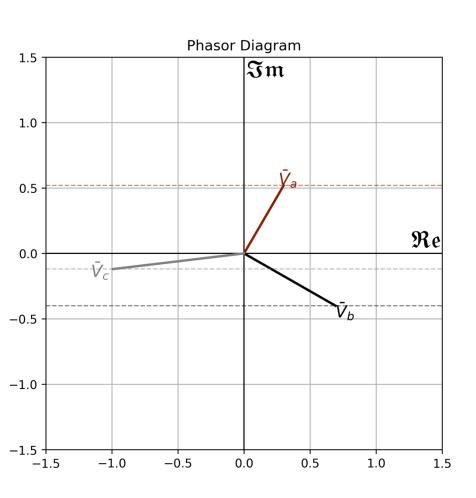
Symmetrical Systems: in a symmetrical system, the angles between subsequent phasors of voltages or currents are equal.

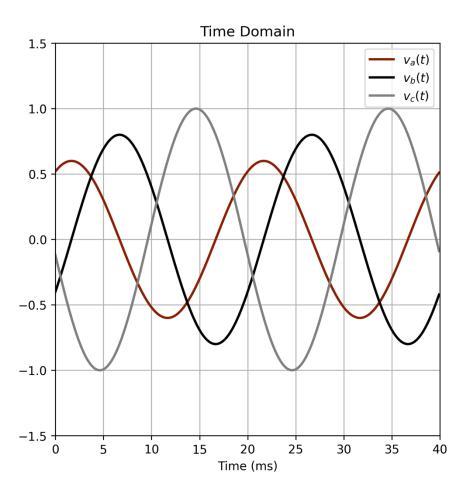
Important:

- 1. A balanced system is not necessarily symmetrical.
- 2. A symmetrical system is not necessarily balanced.
- 3. In a balanced and symmetrical 3 phase system, the phases between sub-sequent phasors of voltages and currents are equal to $\frac{2}{3}\pi$ and their magnitudes are identical.

Balanced and symmetrical 3-ph systems

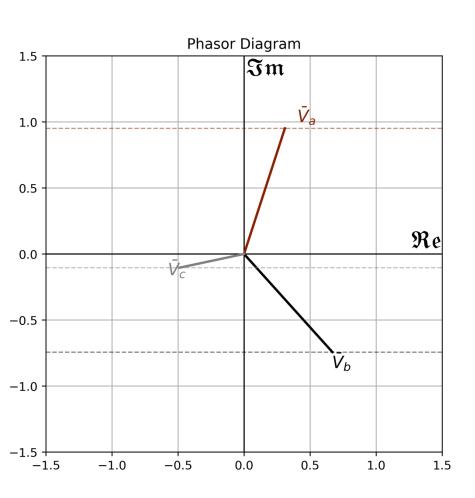
1. A balanced system is not necessarily symmetrical.

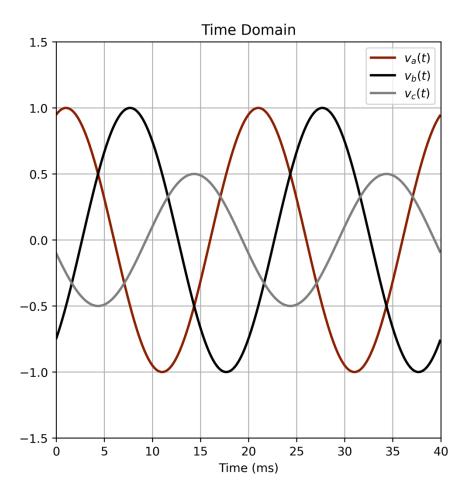




Balanced and symmetrical 3-ph systems

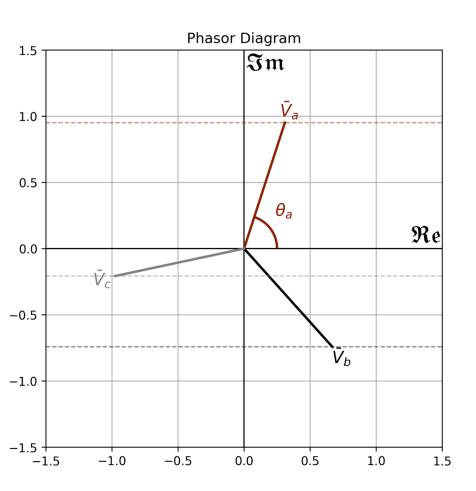
2. A symmetrical system is not necessarily balanced.

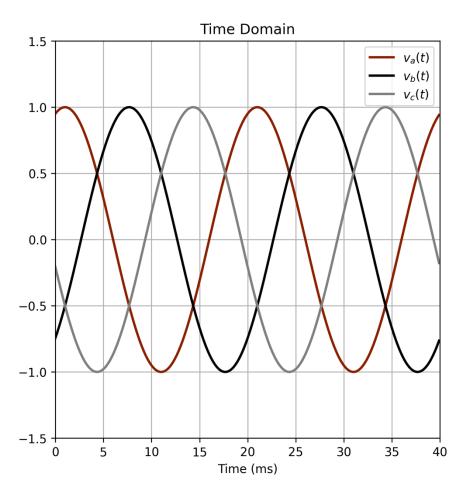




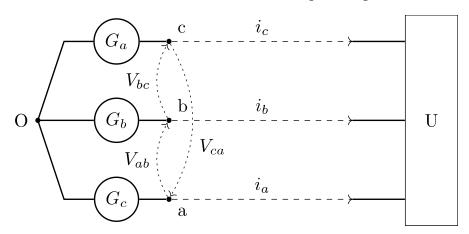
Balanced and symmetrical 3-ph systems

In a balanced and symmetrical 3-ph system the phases have a precise 120-degree phase separation.





Voltages and currents in balanced 3-ph systems



The line currents $i_a(t)$, $i_b(t)$, and $i_c(t)$ are the currents flowing in each of the three phases. For the system in the figure, by applying the **KCL**, we get:

$$i_a(t) + i_b(t) + i_c(t) = 0$$

The **phase-to-phase** (or **line-to-line**) voltages $v_{ab}(t)$, $v_{bc}(t)$, $v_{ca}(t)$ are the voltage differences between terminals ab, bc and ca. For the system in the figure, by applying the **KVL**, we get:

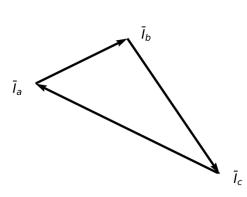
$$v_{ab}(t) + v_{bc}(t) + v_{ca}(t) = 0$$

Voltages and currents in balanced 3-ph systems

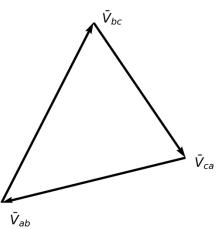
We assume that the three-phase system is **iso-frequency** (i.e., the three phase voltages and currents have the same frequency). Therefore, the **KCL** and **KVL** written before can be also written in the phasor domain:

$$\bar{I}_a + \bar{I}_b + \bar{I}_c = 0$$
, $\bar{V}_{ab} + \bar{V}_{bc} + \bar{V}_{ca} = 0$

As a consequence, the three phase line currents can be represented by the triangle of the line currents and the three phase-to-phase voltages by the triangle of voltages:



Triangle of line currents



Triangle of phase-to-phase voltages

Voltages and currents in balanced and symmetrical 3-ph systems

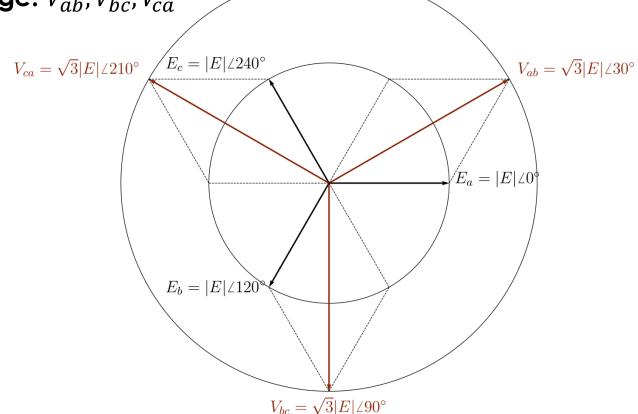
The single-phase voltage \bar{E}_a , \bar{E}_b , \bar{E}_c are the voltage difference between the center 0 (see figure before) and the terminals a, b, c.

Single phase voltages: \overline{E}_a , \overline{E}_b , \overline{E}_c

Phase-to-phase voltage: \bar{V}_{ab} , \bar{V}_{bc} , \bar{V}_{ca}

We also have that:

$$\begin{split} \overline{\underline{V}}_{ab} &= \overline{\underline{E}}_a - \overline{\underline{E}}_b \\ \overline{\underline{V}}_{bc} &= \overline{\underline{E}}_b - \overline{\underline{E}}_c \\ \overline{\overline{V}}_{ca} &= \overline{\overline{E}}_c - \overline{\overline{E}}_a \end{split}$$



Voltages and currents in balanced and symmetrical 3-ph systems

The **total real** and **reactive powers** in a three phase balanced and symmetrical system where E and V are the RMS values of the single phase and phase-to-phase voltages, respectively, is given by:

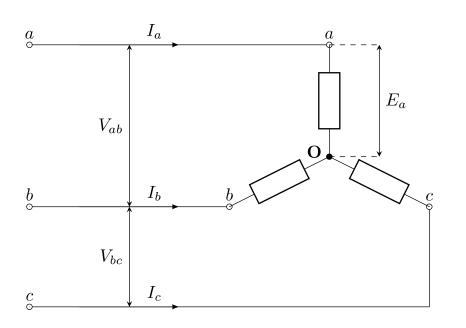
$$P = 3EI\cos\varphi = \sqrt{3}VI\cos\varphi$$

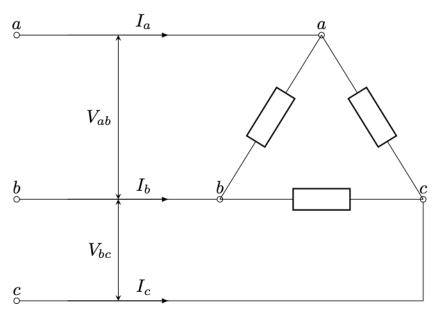
$$Q = 3EI\sin\varphi = \sqrt{3}VI\sin\varphi$$

The power factor is:

$$\cos\phi = \cos\left(\tan^{-1}\left(\frac{Q}{P}\right)\right)$$

Y and Δ connections





Connection	Voltage Across Impedance	Current Across Impedance
Star	$E = V/\sqrt{3}$	I
Delta	$V = \sqrt{3}E$	$I/\sqrt{3}$